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1. InTrRODUCTORY.—As far as I am aware, the problem ot the electrodynamics of
accelerated motion of finite bodies has not been seriously attacked. Attention has
been mainly directed to the question of very small charged bodies, and even in this
case the results are not as exact as one could desire, in view of the important bearing
they have on the theory of the constitution of matter.

Among results which have been generally accepted two call for special attention.
The first of these is the equation of linear motion of a small charged sphere
determined by LorenTz (‘ Théorie Electromagnétique,” p. 124). In the usual notation
this equation is .

(m+m)) i—kii = X,
VOL. CCX.—A 463. U 2.3.10
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146 MR. GEORGE W. WALKER ON THE INITIAL ACCELERATED

where
m' = 2e*faC? and k= 3°CF

¢ being the charge and a the radius of the sphere.

The distribution of the charge on the sphere is not specified, and LoreNTZ does not
claim any great generality for the equation. We shall find, however, that more
refined calculation proves that LorRENTZ equation is an exceedingly good approxi-
mation for vibratory motion.

The second result of importance is the rate of radiation from an accelerated charged
particle calculated by Larmor (¢ AKther and Matter,” p. 227).

The rate is found to be §e*(¢)?/C°. The result is based on the Poynting flux over
a surface surrounding the particle, and reference to the original calculation shows
that certain terms are neglected as small. If the motion is vibratory this is readily
seen to be correct, but it has been claimed that the result is true for a uniformly
accelerated linear motion. The substitution of the requisite form for the displacement
of the particle in this case shows that the terms neglected are as important as those
retained, and the result must be modified. It is further important to note that
MacopoNaLD (‘ Electric Waves,” p. 72) has shown that a term (ne/ for periodic motion)
must be added to the Poynting flux in order to give the whole rate of radiation.
Since a uniform movement in a circle may be compounded of two vibratory motions
there is no reason why LARMOR's result should fail in this case, although the
acceleration is uniform.

LarMor’s result has, I think, been applied to the motion of a charged particle,
without regard to the condition of validity.

Tromson gives the equation (‘ Conduction of Electricity Through Gases, p. 543)

92 (A2
(mryirs & = x,

where the term

S
o
|~~~

@y

€T

P
3 (18

is the reaction on account of the radiation
2
& ..
2 2
2 2 (¥
3 C;( )

Against such an equation two criticisms may be made. Iirst, it does not appear
where the term m/% comes from, as it ought to arise from the total rate of radiation.
Second, for a given velocity it gives two values for (#), which may be real or
imaginary—a conclusion which seems untenable. The difficulty here presented may
be partially removed by consideration of LoreENTZ equation

Mi—rki = X.
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MOTION OF ELECTRIFIED SYSTEMS OF FINITE EXTENT, ETC. 147

Strictly, M and % are functions of the frequency, but with this limitation we obtain as
an integral

AL i dt = j X da.

On average for a periodic motion the term ki disappears, and we get the equation
of balance of energy, for the mean value of kfx*dt is the quantity of radiation as
calculated by LARMOR.

Tt is clear that we cannot reverse this process, and that it breaks down when the
motion is not periodic.

A similar objection applies to the more elaborate expansion by SOMMERFELD
(¢ Gott. Nachrichten, p. 410, 1904) for the reaction in powers of the acceleration.

Asramam (¢ Electrician,” p. 868, 1904) has given a still more general formula for
the reaction. Apart from difficulties as to the distribution of the charge on the
particle, his expression does not enable one to determine the important question as to
what kind of motion is really possible. Many of the calculations I have seen either
ignore the surface conditions or introduce assumptions about rigid electrification
which seriously detract from the value of the conclusions.

Experimental work of recent years has naturally directed attention to the problem
of the dependence of electrical inertia on the speed. Since the problem of accelerated
motion has not hitherto been solved, extensive use has been made of the solution for
steady motion. The process of deriving an expression for the electrical inertia from
the expression for the energy of the steady motion has given rise to ambiguity of
meaning which is inevitable with such a method, and involves a serious fallacy of
dynamical reasoning.

It will be generally admitted that if we introduce steady motion values in a proper
Lagrangean energy function, and then apply the usual methods, we have no right to
expect correct results. This fallacy is shown by the example y = x—a, thus
dy/dx = 1 for all the values of x if we first differentiate, but if we put « = @ and
then differentiate we get dy/dx = 0.

But, apart from this, a fallacy is involved. If the energy function has been derived
from a Newtonian system of equations and the kinetic energy involves squares of the
velocities, inertia may be defined from the energy function in a variety of ways, each
of which gives the same result. Thus, if

K.E =T = lmu’,
we may define mass as
2T 1dT d T d?T
EE T T SR G
o 2w du du 1 du

We may devise an infinite number of definitions, all of which are consistent as
long as T = Imu?
If, however, we find by any process that the kinetic energy involves higher powers
U 2
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148 MR. GEORGE W. WALKER ON THE INITIAL ACCELERATED

2 than %2, then not only do the former definitions give different results, but also we
are not justified in attempting to form any equation of motion at all or draw any
conclusion about the inertia.

The method of investigation by means of the Poynting vector of energy flux
(ABrAHAM, ¢ Ann. d. Physik,’ 10, 1903), although possessing some elegant features,
is open to many objections. In addition to those raised by SoMMERrELD (loc. cit.,
p. 368) we must add that of MacponarLp already mentioned. Further, the satis-
faction of surface conditions become very difficult. The method is very suitable for
determining the field due to rigidly electrified systems moving in a prescribed way,
but does not reveal the manner in which the prescribed motion is established. The
systems to be considered are not rigidly electrified, and our problem is the deter-
mination of the motion, and the way in which it is produced, subject to the necessary
surface conditions.

To give a definite instance, it will be shown that a uniformly accelerated motion of
a charged sphere is established by aid of a rapidly damped harmonic train of waves.
Knowing this to be the case, we might use the method to verify the result, but the
method itself does not suggest the occurrence of this damped harmonic train. Thus
as a means of discovery it lacks an essential element.

Although these considerations had not been definitely formulated when I attacked
the problem of accelerated motion, I had a very distinct impression that the
Newtonian method of investigation would prove the most effective. The measure of
success of the following investigations confirms a growing beliet that Newtonian
methods give a more direct correspondence with physical phenomena than any other
process that has been devised.

2. Fundamental Equations.—It is now generally accepted that the electromagnetic
equations of the free stagnant sether are unaffected by the motion of electrified bodies.
Thus while such motion gives rise to electric and magnetic actions they must conform
to the equations for the stagnant sether.

Hence, if X, Y, Z are the components of electric force, «, 8, y are the components
of magnetic force, and C the velocity of radiation, the equations referred to a right-
handed system of fixed axes are

(v 28 tn_iy 0B 8a>_fl. <7X A
=1

oz’ ot’ ot o)’

NC T 0z ox’ ox oy

<8Y Z  Z X X 8Y>:],<8oc By
ot /

oz oy ox oz’ oy ow) Clot’ d’
w08 0y _,
ox oy oz
oX oY  0Z
N +a? +a = 0.


http://rsta.royalsocietypublishing.org/

N

a
-
I ¥
y & ) ©

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

MOTION OF ELECTRIFIED SYSTEMS OF FINITE EXTENT, ETC. 149

It is generally more convenient to use the equations for a moving origin. Thus, if
the origin moves in the direction of @, so that the displacement from a fixed point at
any time is & the equations become

(o0 0B, e oy 0B _e)_1(0_gBYX )
dy oz’ oz dx’ dx Oy C\o 0
\
)’

(Y _9z ez X Q@_éz) a2« B ),

\0z dy  dx 0z oy Ox C
+ OB LY
890 83/ az ’
oX oY  0Z
R o = 0.

These equations are exact.

In the following investigations attention has been mainly directed to perfect
conductors, on account of the simplification thereby secured. In later sections it will
be shown how insulating bodies may be treated.

It is thus necessary to consider what conditions must be satisfied in and on the
eonductor itself.

Two possible views may be taken about this question.

In the case of steady motion, THoMsoN (‘ Recent Researches,’ p. 18) intrinsically
uses the condition that the tangential component of electric force (X, Y, Z) should
vanish at the surface of the charged body. Now, the force effective in producing
motion of electricity, or the electrodynamic force, is not the electric force (X, Y, Z)
but is (X', Y/, Z’), where

(XY, 2) = (X~ B+ Ly, Y=yt fo Z=Tiar B),

&, 1/, 2, being the components of velocity of the moving point.

Larmor (¢ Ather and Matter, p. 152) concludes that the tangential component of
(X', Y, Z') should vanish at the surface of a conductor in steady motion. Strictly,
we have no equations for the interior of a perfect conductor, but we define it as a
body™ incapable of supporting electric stress. It seems to me necessary to make
(X, Y, Z) and («, B, y) vanish, although from one point of view it might suffice to
make (X', Y’, Z’) vanish throughout the conductor.

We have next to determine how these quantities inside are related to the similar
quantities outside the surface. The fundamental equations integrated through a thin
shell in the usual way show that the tangential component of (X', Y’, Z') is continuous,
but the fact that we have no right to assign the fundamental equations or the above
form of (X, Y’, Z') to the inside of a conductor raises a doubt. If (X', Y’, Z') is
continuous as regards tangential components, then the tangential component ot
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150 MR. GEORGE W. WALKER ON THE INITIAL ACCELERATED

(X, Y, Z) is discontinuous because the tangential component of («, 8, v) is discontinuous
and measures the surface current. To avoid this discontinuity of wther strain
tangentially, I consider the possibility that the tangential component of (X, Y, Z) is
continuous. It follows at once that for a perfect conductor we must have either the
condition (1) that the tangential component of (X, Y, Z) vanishes, or the condition
(2) that the tangential component of (X', Y, Z) vanishes, just outside the surface.

The motion we propose to consider is not; however, steady, but is supposed to be
variable. The condition inside the conductor remains the same, and on the basis of
continuity of sether strain tangentially we again get condition (1). The argument by
which condition (2) is established for steady motion does not appear to me quite so
satisfactory when the motion is variable. An experimental difficulty arises to my
mind in this connection. We know that a copper sphere can be set in rotation by a
rotating magnetic field, and that the motion of a copper plate is rapidly damped in a
magnetic field. If condition (2) holds generally for variable motion, the tangential
forces that actually exist in these experiments are not explained. Condition (1),
however, provides an explanation, because it gives a tangential component of (X', Y’, Z/)
at the surface. '

I cannot claim to have proved condition (1), nor am I convinced of its correctness ;
and, on the other hand, condition (2) seemed to present difficulties. The position
seerned to call for reservation of judgment, and the only course was to work out the
cases for both conditions.

The distinction is, of course, immaterial when squares of the velocity are neglected.

In dealing with large velocities the question of LoruNTz hypothesis, that a body
contracts in the direction of the motion in the proportion (1—v’/C?):, naturally arose.

So far, no dynamical explanation of such a hypothesis has been obtained, and
considerable doubt still exists as to whether it is really necessary. In dealing with a
varying velocity the hypothesis would clearly introduce complications of a somewhat
unsatisfactory nature from a dynamical point of view, if from no other, and 1 have
therefore decided to exclude 1t from the problem.

The method of investigation to be pursued was suggested by reading Loves paper
on “The Mode of Decay of Vibratory Motions” (‘ Proc. Lond. Math. Soc., ser. 2,
vol. 2). In that paper an exceedingly elegant method of dealing with the vibrations
of a fixed electrified spherical conductor is established. The electrification is initially
constrained to be proportional to a zonal harmonic, and the constraint is then removed.
It appears that rapidly damped harmonic or exponential trains of waves are produced,
and equations for the determination of the constants are obtained.

On examination of the expression for an initial zonal distribution of the first order,
it appeared that if the sphere carried, in addition, a constant surface charge, then a
mechanical force, due to the radiation, was exerted in the direction of the axis of the
harmonic, and the force vanished only when the vibrations had subsided. It was
thus argued conversely, that if a charged sphere was initially at rest and an
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accelerating force applied, the initial motion would be attended to a first order of
approximation by the production of a damped harmonic train of radiation depending
on a zonal harmonic of the first order, and that equations could be formed for the
motion of the sphere. This method proved successful (‘Roy. Soc. Proc.,” A, vol. 77,
p. 260), and was extended to a second approximation. It was next found to be
applicable to a disturbance from a state of steady motion with any velocity in a
straight line.

3. Initial Motron of a Charged Conducting Sphere.—This problem was solved in
the paper just referred to, but the accelerating force was supposed to arise from a
uniform electric field. In order to obtain the electrical effects of the motion free from
a superposed electric field, it is convenient to suppose that the accelerating force is of
a purely mechanical nature. As the procedure is almost identical with that given
(¢ Roy. Soc. Proc., loc. cit.), it is sufticient to note that if' € is the displacement in the
direction of  the primary equations are

@’ (Ct—a)+ay (Cl—a)+x (Ct—a)—eé[C =0, . . . . . (1)
eC
a

and

mé+2 Sy (Ct—a)=TF, . . . . . . . . (2)
where I is the mechanical accelerating force.
The initial conditions are ¥ = x’ = 0 when » = Ct+a and £ = £ = 0 when ¢t = 0.
If we write m/ for §e’faC? the solutions are

o INT
X (Ct—7) = Ae~@77H0% gin {(8 + 4ﬂ> (Ct—=r+a) i 6}

m 20

+1 ~——(’—F———5 {(Ct—-r+0&)2—— ﬂﬁ—;(Ct—?'&-a)——gM },

2(m+m) C (m+m/ (m+m/)?

§= _2 CA —Ct'2 SIII {k3+47jbl>l‘0 +e }

mco(/ m 20

F { . 2m’  at 2m/? cﬁ}
(

_+.

=

L am d me @l
(4 m+m') C " (m+m') C?
where
. eFa*mm/
A S1n € = Y Sr P
3 (m4+m')
and

4m’ __eFa® (2m+3m")m
<3 +—T¢> A cos e = —p O
It may be observed that the initial displacement expressed by the damped
harmonic part is equal and opposite to that expressed by the non-periodic portion.
After one complete vibration the amplitude of the vibratory part falls to

/( 5 +4m’)1/2 ,

m
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of 1ts initial value, and thus the vibratory motion may practically become insignificant
before the equations become invalid. Since the decay is exponential this can be
secured for moderate values of Ct/a while the whole displacement can be made small
by making ¥ small.

In these circumstances the displacement of the sphere is adequately represented by

€= m_]i__{ 5 2m/ it omPa? 1
() (m+m/)C ~ (m+m/)?C?

[

while

) =L _;:11{ ) 2y _ 2@@"’&}
x (Ct=7) 2(m+m’)C3 (Cr 7+c¢) (erm’)(Ot r+a) (m+m'y?

throughout a certain region.
Within this region the state of the field is given by

ek (0 —2?)
(/nl _{_ /)n,’) 02 /},,3

(X, Y, Z) =5 (, 9,2)+(1, 0, 0) %

8

el (3a®+17)
(m+m/)yC*

1 eF . m'a )
(2, B, y) = ;“(O’ =2 ) (m+m") C {t+(m+71/b’) O}

— (e, wy, w2) )

At greater distances the damped harmonic train would have to be retained.
Hence a constant surface density is established, given by

_ 1 {fi B }w
T mrm)a P
We further find that

: F ( m’ @\
[ — [f+,_ T
¢ (mA+n/)y N mn C,/)
a K
£= mm)
(

Hence the sphere arrives at the point £ as if the equation of motion had been

(m--m) =T
7 2
with an initial velocity »-7—}&%; and an initial displacement »«Eﬂf%-»ﬁ We have
(m+m')*C (m-+m)>C
thus shown that a uniformly accelerated motion is possible, and that the reaction of
the medium is #/&. ,
If we introduce a new variable, ¢, defined by e¢/C = x—e&/C the equations (1)

and (2) become the equations of motion of a system in which the kinetic energy is
T = o/ (4 &P+ dmé + 1w (Ep—€) Cla,

* In ¢Roy. Soc. Proc.,’ loc. cit., p. 265, line 5, write m/(m +m') for § (2m +m')/(m+ ).
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the dissipation function

D = L/¢ ($+€) Cfa,
V = in/¢*C?la’.

and the potential energy

It is important to note that a dissipation function is required, and also that a
gyrostatic term has to be introduced in the kinetic energy. It gives a hint as to the
pure dynamics of electro-magnetism. That such a term should occur might be
expected from the fundamental equations of the theory, but in the general energy
methods of treating electrodynamics I can find no explicit reference to such a term,
nor do T see that it could be obtained by other than a Newtonian method. Having
obtained the term, it would no doubt be easy to.show that it is included in the energy
function, but this illustrates exactly MAcpoNALD's contention (‘Electric Waves,
chap. I.), that the modified Lagrangean function itself cannot be used to determine
the concealed motions.

The equation (m+m’) ¢ = F, which we have seen may rapidly come to obtain, may
be held to suggest absence of radiation. This, however, is not really the case. We
have already remarked that the true solution, while consistent with this equation,
gives an apparent initial velocity and initial displacement, originally connected with
the damped harmonic train.

The rate of dissipation 2D is found to be

m'F m a
B (m+m’)2< C mtnl G> ’
which shows that when ¢ > C’ the effective part of the dissipation is really
negative, suggesting that energy is being supplied to the system. Initially, to avoid
this, we should thus have to include the vibratory part.

If at a time ¢, the accelerating force ceases, the sphere settles down to a steady
state with a constant velocity. This is accomplished by the production of a new
damped harmonic train.

We may carry out the solution as before, and when the new damped harmonic train
becomes negligible, we find that

Fe, (¢—1¢,) Ft? am/Ft,
(m—+m/) (m+m) C(m+m/)*’

¢ =

and the field is
(X, Y, Z) = 5 (2, 9,2),

T,
(m+m')’

(a, B, 7) ;3( )

Thus the velocity finally established is Ft¢,/(m+m'), which is the velocity acquired

by the system having inertia (m+m’) acted on by the force F for a time ¢. Thus the
VOL. CCX.—A. X :
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apparent contribution to the initial velocity produced by the first vibrations is exactly
destroyed by the second vibrations. In a similar way the apparent contribution to
the initial displacement is destroyed.

The contribution % (m—ﬁl:n’) is the displacement due to I acting on (m-+m’) for a
time ¢. 'The contribution —O—z%%-,—)—é, on account of the appafent initial velocity,
could not be expected to disappear.

There is no loss of energy since the velocity established is (mﬁt;n’)’ and the energy
of the system is %(%F;_t—‘;—,) or Fx%(q—nF:_%,—), and is thus the work done by force»F

acting on (m+m') for a time #. The dissipation function is now found to vanish.

The result then shows that the initial motion is attended by the production of a
damped harmonic train. On account of the rapidity of damping, a uniformly
accelerated motion soon becomes possible.

The existence of a gyrostatic term in the kinetic energy has been revealed, and also
the existence of a dissipation function.

The production of waves (Rontgen radiation) by the sudden creation or destruction
of a velocity has been already shown by Tmomsox (‘ Conduction of Electricity through
Gases,” p. 538). Our investigation shows that the establishment of a constant velocity
is really attended by the production of two rapidly damped harmonic trains, which of
course combine if the time of action of the force is sufficiently short. The frequency

of the waves is ( 3+4W~?—,>1/2 C and the modulus of decay C/2a.
m/ Awa

4. Second Order approximation.—When the former expressions for the field are
carried out to squares and products of & and x (Ct—r), it appears that the motion is
modified by the production of damped harmonic waves depending on a second order
zonal harmonic.

We therefore introduce a new function x,(Ct—r) associated with a second order
zonal harmonic supposed to be small of the second order, while ¢ and x, (Ct—r) are
small of the first order. (X', Y, Z') now differs from (X, Y, Z) by terms of the
second order.

We can readily show that this will introduce terms of not less than the third order
in the equation of motion of the sphere when condition (1) is used.

Thus the surface density is given by 4wo = N, where N is the normal component
of electric force. Since the tangential component must vanish at the surface, the
force due to radiation reaction is '

—1 f NP, dS,

= 27 4(0'2]?1 ds.
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Thus, if
g = Uo+0'1P1+0'2P2,
where
o, 1s of the first order,
and

o, 1s of the second order,
the force becomes

+1

= 47’.{'2@2 j P1 (0'0 + O—lPl + 0'21)2)2 d’L,
-1

= 4.772(12 (%0‘00’1 + 1%0'10'2).

This result can readily be extended, and it appears that only products of successive
a’s oceur.

I had a special reason for wishing to examine the effect of a uniform field of electric
force I in this case, so that the new meaning of F must be remembered in comparing
results with those of the preceding section.

The forms to be assumed for the field in accordance with the fundamental equations
up to the second order are

N
(X,Y,7Z) = 7%(oc, Y, 2) + 7%(.702, ay, xz) (r’x," + 3rx, + By, — 3e€[C)

+ (1, 0, 0) {F-—q%(1"2x1"+7'x1’+x1—e§/0)}
_@_§_2 - 1 5 3 2 02 2
+ ) (xa Y, ‘d){ +2( €L ’/')/’)/‘}

C¢

' 2
+ 3 (z, ¥, 2) { (7" + 8y +3x1) — % (" + 677" + 15y + 15X1)}

' 2
+ ;Cg(w, Y, 2) {(WX2”+ 31xs +3xz) — % (7'3X2”’+ 67°xs" + 151y + 1 5X2>}

C

Hence, in order that the tangential component of (X, Y, Z) should vanish at the
surface, we must have for » = o

2
+ 0@, 0, 0) (175" 30 B+ 6x6) + £+ 3+ 6+ 6x0)— P |

002X1,/+0(/X1/+X1—6§/O = 063F/C,
3ef?

C

Hence we find that the surface density of electricity is given by o, where

C.P <3a3F

(1/3X2/”+ 3a2x2/1+ 6“X2/+ 6X2 —_ E (0&3X1///+ 3(1/2X1,/+ 60&X1/+ 6X1)

e

. C.P :
477.0. — a2 + ad —2CI/ZX1/,> + a/4 2 {“3X2//I+a2x2ll+ E(a3X1,//+a2X1/,)})

C
while the equation of motion of the sphere is

.. 3 2 3
mé = % Z_? <i%_F _2“2X1”> + _1250%_ <§%_F _20’/2)(1”) { 003)(2/” + azxzu 1€ ( C‘3X1m + alefl)}'

X 2
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156 MR. GEORGE W. WALKER ON THE INITIAL ACCELERATED

There is theoretically an additional reaction due to the magnetic force acting on
the surface current. It depends on the fourth power of the velocity, and has there-
fore been neglected.

Vibrations then of the first and second order arise, but since these are rapidly
damped we may fix attention on the motion possible when these have become
negligible.

A trial of the assumption € = }£,#%, and determination of the ensuing forms for y,
and y, from the conditional equations, shows that in the equation of motion we leave
unbalanced terms of the third order in &, which depend on the time.

A uniformly accelerated motion is thus impossible with a constant force, but we
may destroy the terms of the third order in the equation of motion by assuming for &

the for
orm = Ryt St + Lt

where £, and k; are at least of the third order. For the satisfaction of this condition

we require : o
! b oF { o PF*m (3mm” —m®— m’?’)}
1= T 5 ;
(m+m') > C* (m+m/) ’
J, = -3 mm”  a’eF?
*(m+m’) C
L m'mael?
ks = — %

In these expressions higher powers of F have been neglected.

The values of (X’ Y', Z) are obtained by adding to the expressions f01 (X, Y, %)
the vector —(O Y, 2) (. + x') &,

Hence, using condition (2), the equations that hold at » = « are now

a*xi”" +ax) + xi—eé[C = o*F/C,
a’xs" + 8a%yy + 6axy + 6y, = 3e€7[C— €& (axy™ + Ba’yy” + 6axy + 6 x1) —é(c&xl"’—kxl’) @*[C,

while the surface density is given by o, where

3
dmo = 0%4' %E“I@%—F“”m Xl//> (jPz{OLSX a4+ E(aPx + atx)") + E(ax +xd) @ C.

The equation of motion is
o _C // C n 20 " E N 2.,/ NI N - " N 20
mé = e|F=2~ +5 B—gax {aP\S" +ayd + E(dPy" +aty) + E(ex + x ) *[C .
Proceeding as before, by assuming
& = $ht*+ 5kt + Lkt
we find, up to terms of the third order in F, that &, = k; = 0 and

el {1 L @B m (3m/ — 2m)}
+ m/‘ (}2 (m + m/)3 °

]i:l -
m
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Thus, using condition (1), a uniformly accelerated motion under a constant force is
not possible, but since the deviation depends on the third power of F, it is clear that
a high degree of accuracy can be claimed for the results of the preceding section.
Using condition (2), a uniform acceleration is possible, including the third power of F.

The constant part of the acceleration is modified in a way which depends on the
relative magnitudes of m and m/. In each case the effect may be to increase or
diminish the electric inertia by the existence of the field. The result differs from that
obtained by Heavisipe (‘Nature, April 19, 1906), and afterwards by SEARLE
(‘ Nature,” June 28, 1906), who find that the field always increases the electric inerfia.
The argument is based on the energy of the steady state, and I have already shown
that no legitimate inference as to inertia can be drawn from this.

It is noteworthy that if the field F was of the same strength as that produced by
the charged sphere at the surface, viz., efa’, the term &’F?/C* would equal e"’/aC2
or 3m/.
 If the approximation is valid for such a field, the effective modification of the
electric inertia would thus be very considerable.

This conclusion is of very great importance in experiments on Becquerel or Kathode
rays, where we must suppose that a large number of charged particles are moving
very close together. It seems impossible to estimate how much effect would be
produced, but that some modification of the effective inertia would result from the
mutual field of the charged particles is beyond doubt.

5. Initial Motion of a Charged Conducting Sphere moving with any Speed after
Longitudinal Acceleration s imposed.—The problem of the steady linear motion of a
charged sphere using condition (1) has been solved by TrHomsoN (¢ Recent Researches,’
p. 17).

We now proceed to investigate the effect of an accelerating force in the direction ot
the existing motion.

The general equations for the field in the wmther referred to a fixed origin are those
in Section 2.

If we refer the system to a moving origin, for which the displacement parallel to x
at any time is £C¢+f (), where k is a constant, the equations become

oy 9B dm_ 9y 8_@__8_g>=_1{g_, , 9,}
<8y o' oz ox’ ox oy C lot (RC+/") o X, Y, Z),

<8Y X KB A2 o L, 6,

2 oy’ ox oz oy ox) C
8,8 ~ 0,

aw 8J 84
Q_X_;_a__Ym_y.a_Z__()

ox 0y 0z
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When f(¢) = 0 we get the equations for the case of uniform motion, and as a
solution of these equations independent of time, we get

ocO:.O, :30=ka%l}£a ’y = —/Calpo

9y’
X, = 41%2)%’5, Y, = ,_a_‘% 7, = Gfo
where ¥, is a solution of
« A A i
(1— k)am 3y t g =0

In order to pass to a disturbed motion, we may assume f(¢) to be small, and that
the electric and magnetic forces differ from the steady values by X, Y, Z, «, B3, y,
which are small of the same order as f(¢).

Hence, neglecting squares and products of small quantities, the fundamental
equations are ‘

oy 8 da_ty 38 _tay_1(0 0 710 2
<8y oz’ oz odx’ dx Oy L(Ja )(X Y, Z)— (XO» Y, Z,),

(Y %, @ X X _W)_ 1o
d2 oy’ dx %’ dy ou, (

o el VALK
ot kCaLL‘/ (a’ '8’ ')’) C aw(a07.BOa ')’0)»

890 dy %

oX  OY , 34
EJ—J+@+-82_ 0.

When condition (1) is used it is convenient to assume the system
o= 0,

_1 3 ;. o iy
T Cotos ]8%84 kfaxaz’

_ 1 & . P "y
Garoyt Yaeey Y sway

X = — (].4—]\':2)‘]“ 82‘7{{0 82‘?5 8295

—_ .82‘7”0 azd)
Y= =S 5oyt swoy

0" o ¢
owoe ' dwen
where ¢ is a solution of
9 _ 2(OD TP
Bt KO >4’ O<az dy” W)
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and ¢ is supposed to be small of the same order as f, but there is no restriction to a
small value of £.

In the particular case of a charged conducting sphere, we have to satisfy the
condition that the tangential component of electric force should vanish at » = «, and

that the surface density of electricity is given by Z] (normal component of electric
o

force).
The appropriate form for v, 1is

B = (=) ep,

where
2

pl= - k2+y +27

and e is the total charge on the sphere, which is not uniformly distributed.
The corresponding simplest form for ¢ is

b = pxd Clmo—p/(1— K}

where N = k/(1—%) and y is an arbitrary function.
Thus the contributions to electric force are

L ef P } { P Ry } ”
(X’ Y, Z) = pg( 1,0, O) [X ( 73)1/2 {(1_k2)1/2+>\7 (1 ]{J)l/z 1 _]\,32)1/2 + A X
k )
+(1_;796—2ﬁ)—5(x’ 1, Z) {X +(_1_:—-pkg)_l7§x//}
x . ¢ Sp p’ "}
+(1—]c2) pﬁ(w? yw‘) [3 {X (1_k2)1/2} (1 kz)l/zx +(1—](:2)X

Now, the finite terms due to the steady state are already chosen to secure the
vanishing of the tangential component of (X,, Y,, Z,), hence the tangential component
of (X, Y, Z) will vanish at » = a, provided

e
X~ (1 ';:2)1/2 {(1_262)1/2'{'}‘90} (1 ]62 12 {(1 k2)1/2+)‘x}X”:0

when » = a, for all values of ¢.

As in the simpler case in Section 3, damped harmonic vibrations will arise and
rapidly become negligible. We therefore proceed to consider the motion established
when the vibrations have subsided.

Let o o

_ S =% fit? where f, is constant,
then, if -

1 I R VA S
X 2 (1—]62)1/2 2 [{Ot (1—]{:2)1/2 )\‘U} (1—/(:2)

the tangential condition is satisfied identically.
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Hence the total components of electric force at » = @ are

. e
(Xo+X, Yo+ Y, Z,+Z) = W (%, y, 2),

k '
HimEye ) {1‘(1_752) pz} X (Cr),
y e 3a 7
Iv i 1
The surface density of electricity is given by o where

— eq kOL _ 3.’1}2 e ax { _ 3@2 } y
4W~(1~—70“))”2p3+(1—162)p“{1 (1—k2)p2} X (u)+(1—/ﬁ)p3 ' (- pf X ()

It may be verified that the terms in ¥/ (Ct) and x” (Ct) contribute zero to the total
electric charge as is required.

Since there is a surface current in addition to the convection current due to
transference of the sphere, the mechanical reaction on the sphere is

=3 [{o (Xt X) = (B 48) 10 (ru )} S,
where u, v, w are the components of cwrrent determined by the surface discontinuity

of magnetic force and the integration is taken over the sphere.
Neglecting squares of small quantities the value is

1 2 2 2012\

. _ex" (C) Ty | 1 > Cy +_lc__3:__(i2_m2_)_3
<1+-—ﬁ7“” > (1—7?) (1+-—-]”’ ) 2 <1+~—-———/“” >

- S -5 |

o a (1 __k2)3/2
The evaluation of the integral, which is somewhat tedious, gives for the reaction

dx.

—1

the value

L o [A—184 61 (454K . iy
i ZZ’O’_Q { /{;2 (1 —762) - ]63 (1 —-]\'}2)3/2 Sin L.
The equation of motion of the sphere under a force F is thus

4—18k%+ 6k 4—5k"+ 44"
K (1—k?) B (1 —12)

mfy = F+% % {

16 a02 Sin‘lk}'
We thus prove that, to the given order of approximation, a uniformly accelerated
motion is possible as soon as the vibrations subside, and conclude that the initial

electric inertia for longitudinal acceleration is

L e {(4-—5Ic2+ )

_ iyt g (4= 18K+ 6k JL
a

]C3 (1 - k2)3/2 k,2 (1 . k2>
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The limiting value of this expression when k=0 is found to be 3 e’/a(C?, thus
agreeing with the result in Section 3.

When condition (2) is used the method of procedure is very similar to that already
used.

The components of electrodynamic force are

Xy = —(1 k?)g%, Y'(,:_(1_k2)g_;/@, Zy= —(1— lcz)a"’o

The condition that the tangential component of (X, Y’o, Z,) should vanish at
r = a is equivalent to the condition that ), should be constant at » =a The
solution of this problem is given by MacpoNaLD (‘ Electric Waves, p. 172) in the
form
Y = Flog coth 1,

where

# L (1=B) (42) _ s
cosh? 9 ey
It appears that the surface density of electricity is uniform and equal to ef4wa’.
In proceeding to the disturbed state it was found convenient to modify slightly the

expressions formerly used.
With the same restrictions as before the total field in the disturbed state is
given by

a =0,

R . .
B=h5 oo Fama Y k

Lo 1 Pp 0%

C‘l’o__

y=—k 87—(_)81583/ 8908J f8t87 oy
(1 o _ 72 8\/;0 afb 8¢> 2

alﬂo f azlp‘) 2¢ A
oy o 8J ox &y ay’

_ O 0%, o2 ¢
Z= A f81 az ox 0z 8/
Hence

X = (k) (g f T TE T (1 X,

) 3 oy F¢ Lk B¢ ko ,
V= (RS (L) S+ (1) v G+ gy T k)

7! 2 0 2 0 az » k 82 l/‘ a 0 2
R T s o & A ’“)*X‘

VOL. CCX.—A. Y
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In these x, which is independent of ¢, satisfies

(1— kz)ax X %X =

a_aa’

(sl umc(28, 78,2

and ¢ satisfies

while x¥ and ¢ are both small of the same order as f.

Vibrations may be supposed to arise and subside rapidly. It is clearly not possible
to determine these in a simple form since the question corresponds now to vibrations
on a spheroid at rest. . "

Such vibrations do not lend themselves to analysis in the same way as vibrations
on a sphere, and only approximate treatment has been found possible.

Our object, however, is the determination of the motion after vibrations have
subsided, and with this limitation it has been found possible to complete the solution.

The determination of ¢ and y to satisfy the surface conditions proved an exceed-
ingly difficult problem. The process was in great measure tentative, and does not
possess much intrinsic interest. When obtained the solutions can be verified in a
straightforward although slightly tedious manner.

It f=Lfit?, where f, is constant,

T oo e
where

b, = %é‘i‘l‘o’ Yy = 7:-& log coth 47,

¢, = “]2“(}‘;‘ k(1= LZ) Yo ka cosh 7)}

i e = A
and '

- %'{3%{(1 =B (v i)l

where

_1/\1 1+L

These expressions substituted in the equations satisfy the condition that (X’, Y’, Z’)
should be entirely radial at » = a.
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The components of electric force at » = a are

_e(1=F)x _ 2fekCla (a®—2?) 4 Frea? <] + kB
a(@*=?) Ca(a®—y  Ca(d®—ka?)\" 1-k/°
vV = ey of el Ctay Joeay 1+ kB >’

ez of ek Cla Sz

= ol T Ca (@R T Ca@ P =\

! [
T w(@ ) T Ca (= T Ca (@) (I—F)\ T 1R

kB >
1—k/)"

Thus the surface density of electricity is given by

_ e Jret B >
dmo = @t C2a(1—lc2)<1+ 1—k%)"

There is thus a redistribution on the sphere while the total charge remains
unaltered. :

The mechanical reaction on the sphere in the direction of @ is }foX’dS, since in
this case there 1s no surface current, and X’ = X.

The term in fit vanishes on integration, and hence, neglecting squares of f, the
value is

B

Hence the equation of motion is

S le% { (1 +k) 2

Thus a uniformly accelerated motion is possible, and the initial electric inertia for
longitudinal acceleration is

D S 11’3)}
Yo\ FGoE T F S (1=

This result is the same as that of ABraHAM for a rigidly electrified sphere. The
investigation shows, however, that a redistribution of the charge takes place.
The limiting value of the expression for k = 0 is 2e*/aC.

6. Initial Motion of a Charged Conducting Sphere moving with any Speed after
Transverse Acceleration is imposed.—The sphere being in steady motion with velocity
kC parallel to , we now suppose the accelerating force to act at right angles to the
original direction of motion.

Thus we now take f(¢) as a small displacement parallel to the direction of .

Y 2


http://rsta.royalsocietypublishing.org/

A
N
. 0

/

e

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

\

3

Py

///

AL

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

164 MR. GEORGE W. WALKER ON THE INITIAL ACCELERATED

Referred to the centre of the sphere as a moving origin the steady state is given as
before by

Yo =

aO% O) BO:]C%%); = _k@a—l‘lj),
= (1—12) — _ % — _ %
=-( k>8x’ Yo = oy’ 7 = 0z

Proceeding, as before, to a first order approximation, we find that the field due to
the disturbance, using condition (1), is conveniently expressed by the system

__1 o

~Cotor’

Py g, PP
’kfaja/ oz oy’
_ 120 _ 31!/0 ¢
~ Cotx f +]82’

k) 26 /c P
ag/ 833 Caotoy’

Y=—fa2‘1‘°_(1_k2)§i/> ’p kP

0 3* o Cotow

_ Py P
Z= f8y8z+8y8z’

Ftog)e - o+ ar+5h)

X = —(1- W”‘) r(1-

where ¢ is a solution of

supposed small of the same order as f.
We assume the same forms as before

Yo = (1—F)"""e/p,
— 51 e Y —\
b=p Xi(’t (1_]02)1/2 %}
The contributions to electric force are

(X,Y, %)= 5—3(0:—1,0)[{# (1_‘9/;)” { P )1/2+A93}X+ (1_f;cz)l,z{(l_f}cz)l,ﬁmjtxﬂ}

KA ” [ _ 3€f 3P ' P2 //}
+p5(m7 Y, ")JKSX (1_k2>1/) (1= kd)mX + (1_‘k2>X .

,_;

The tangential component of electric force vanishes at » = a if

A
X~ (1 ek2)1/9 {(1 _pk2)1/2

+)\x}x'+ +)\w}x" =0,

p { p
(1-—]62)1/2 (1_k2)1/2

when » = a for all values of 7.
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If, as before, we consider the state when the vibrations have subsided, we find that
the tangential condition is satisfied by assuming

= 4hE
1 R a0
X= 2 (1—k2)’/202l:{0t (1 ;2)1/3 )\x} (1—k2}]'

The total components of electric force at the surface are

X+ X, Yo+ Y, Z+Z) = (_Ij—;’a)m(oc Y, 2)

(13]6]::;{ 5(“" Y ) X (Ct)

3a”
L) (1=29) 7 (O,
it 9 (1= 25) ()
The surface density of the electricity o is given by

_ ea _ Bkaxy oy ( 8a>
dmo = (1—]62)1/2103 (1—-762) P.sX ((’t)+ (l_kfa) P3 1= P (Ot)

The terms in x'(Ct) and x” (Ct) contribute zero to the total charge of the sphere.
The mechanical reaction on the sphere in the direction of ¥ is

= 3{o (Yot V)= (yo+9)+ 0 (as +)} 0,

where the components of current are determined as before from the surface discontinuity
of magnetic force.
Reducing the expression and neglecting squares and products of small quantfcms
we get for the mechanical reaction
e 4k -1 - 1+ 2k
% a('f\‘og {/{;3((1 kg))l/a sin 1]C+ 1{‘2 }.

Thus the equation of motion under a force F is

o 4 [ (4kP=1 S, 1+28°
W?ﬁ) =F—3 &%% {]c3<(1__]02))1/2 sin™ 'k + —5— T }
‘Hence, to this order of approximation, a uniformly accelerated transverse motion is
possible when the vibrations have subsided.
The initial electric inertia for a transverse acceleration is thus
1 e? { 4k —1) sin—1 + ,:*LQE}
aoz /c3 (l ]cd)l/z kz ‘
The expression, when converted in notation, is identical with that obtained by
J. J. THOoMSON (‘ Recent Researches,” p. 21).
The limiting value for £ = 0 is found to be as before, 2e*/aC?
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Using condition (2), the forms to be assumed for the total field are

_1 9
Cotoz’

gl gy B0

— /I

oyor  oyoz 07

3

8\110 1 % ™, (1) ox

v= ke YA W oap Tty

- _ 28‘/’0_ 72 a‘l’o 1 az‘é-ﬁaz‘f’ _.2aX
(1 k) (1 k)f ( ]”)amayi'catay+(1 ]“)8‘70’

Yz_%_f%_(l_,c)é_qs 82<]S k@ oy

oy oy’ o2 Cotox 8y
— a‘l’o 0 ‘I’o 2¢ 1.4
2= oz ~f oy oy o Y 02 *

Hence

P (172 O Pho gy O Lk TS kS a% 12y 0X
X'=-0 k)ax -(1- ]c)fa oy +(1 ]U)aocay_*-(latay oy +(1 k)B

L% (1-1) ax

~(1-#) G (=) e (1) §5 - 5 5
0°

Z’=—(1—7c2)%—(1—7c2)f{;¢° +(1=1) ‘g H(1-1) K.

We obtain as a solution when the vibrations have subsided
= %A
ka
4) {Ct (1 ka)} d)l { (1—_sz)} ¢2+¢3’

where
¢ = %{fglﬁo, Yy = % log coth %,
_1 i { e }
2= C?k (1—£%) Yo ka cosh
1ﬁ 1 - (3— k)a} Qekacoshy):l,
$s = 202[3(1 k2){1 YR e s Ty
and -
1o [ 1 (‘l—»B)y<¢:——€'— sinhnﬂ’
X=z 21[(1——]62) 87 * Ja cosh?n/ |
where

s {-tmie)
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These forms give at » = o

v oon | e(1=1) | 2fekCt (1= ay  fie 1+ —=FB)y }
(X9Y’Z)_{a’(a2_k2wz)+ Cza(az_ksz)z +0200(1—]C2)(6!/2—7€2962) (w Y, z)’

thus securing the condition that (X', Y’, Z’) should be radial at the surface.

Further, at » = o we have

e (1—1)w +2ﬁ;ek0t{(1 1) oy

- 1Y } foexy (1+K—kB)

) Ca  (a*—kx 2) #(a?—k2?) Pa (B=ka®) (1-k)
v = ey 42 FaekClt { ey 4 }

- a (0&2——162.’)02) g ( a? -l 2)2 2 ( 2_702902)

3

Jie A+ —FB)  fe 1+F)
Cla (o e ) (1 - ) @T{I"leoggi—k)}

_ ez L2 JaekCtayz L Foey (1+72— —k°B)
- w(a2_k2x2) 02 ( 2 kZ 2) 02 ( 2 k2 2)( k2)2
Hence the surface density of electricity is given by

o 1 L (LB ey (k)
= T e ! z“kl Ei=h T Ca =Ry

Thus a redistribution of the charge takes place while the total charge is unaltered.
The mechanical reaction in the direction of y is oY’ dS since there is no surface

current. Neglecting squares of f;, we obtain on reduction the value

e[l O s R - gt () - O 0]

As in former cases, a uniformly accelerated motion is found to be possible, and the
initial electric inertia for a transverse acceleration is

¢ 144 1+k) 1 1 1+k L=k L+k

5o H( DY Hog §1—k;_7€2}+%‘ {é% 10%%*:1%—1} {( o5 )1°g§1 k; IJH

This result differs from ABrAEAM'S formula in so far as it contains the product term.

The limiting value of the expression for k = 0 is % ¢*/aC?

7. Comparison with Hxpervment.—In the preceding sections we have considered
the acceleration to be produced by a purely mechanical force. It is perhaps almost
directly obvious that if the force is due to a uniform electric field F, no change of
electric inertia is produced when F® and higher terms are neglected, as we have
merely to superpose on the former solutions a uniform field with the appropriate
induced electrification on a body moving uniformly. Initially, of course, this
state is produced by the aid of a rapidly damped harmonic train. As a matter of
fact the problems already solved were first worked out for an electric field which was
afterwards annulled with a view to making clear how much of the induced electrifi-
cation was due to the accelerated motion itself.
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The results established are true without limitation as to the size of the sphere, but,
as will appear, it is only for velocities comparable with that of radiation that the
possibility of experimental discrimination can arise. We are thus at present limited
to experiments on negative electrons, and among researches on the deflexion of such
particles KAUFMANN’S investigations on Becquerel rays rank first in historical order
(¢ Gott. Nachrichten,” 1903, Heft 3; < Ann. d. Physik,” vol. 19, p. 487, 1906).

We propose to examine three expressions for the transverse electric inertia.

With condition (1) we have

s 3 { 4k*—1
164% Lk (1—FK%)"2
With condition (2) we have
m S {L—l——]ﬁ log Ltk 1}

(J. J. THOMSON)
sin” A+ 14 2]62} .o or
(Present No. 1).

2 ok T (M. ABrAHAM),

m[s [Lh2 1k

PV AR Ay A 1}+—» [1 1051+k }“ logﬂ—lﬂ (Present No. 2).

82k C1—k Sl 2k C1-k

In these expressions m/ equals %¢’/a(?, and £ is the ratio of the velocity of the
sphere to that of radiation. They all agree in giving the value »’ when & = 0.

The expressions of THOMSON and ABRAHAM are derived from considerations of the
steady state. The ambiguity of interpretation from consideration of a steady state
has already been commented on in Section 1, and has been definitely admitted by
Porxcart. Thus it is not surprising that the expressions differ, although it so
happens that we have obtained expressions which agree with THoMSON'S result
for transverse motion and ABRAHAM'S result for longitudinal motion.

The following table gives the numerical values of the co-efficient of m/ at various
speeds according to the three expressions :—

THOMSON, > THOMSON, ; -

k. Present ABRAWAM, I%ese;lt k. Present ABRAHAM, | Il\foése‘r)m

NO. 1. No NO. l. 1 . .

j
70 1-327 1-295 1-228 -86 1-800 1:639 1-483
71 1-344 1-308 1:238 87 . 1-858 1-677 1-511
72 1-361 1+322 1-248 88 1-924 1-718 1-541
73 1-380 1-337 1-259 ‘89 . 2:000 1-764 1575
T4 1-400 1-353 1-271 i ©90 2:085 1-816 | 1-613
75 1-421 1-369 1-284 91 1 2-188 1-874 1-655
76 1-443 1-387 1297 92 0 2-306 1-940 1703
T 1-467 1-405 1:310 93 2455 2:016 1-759
78 1493 1-424 1-325 ‘94 1 2637 2-107 1825
279 1-521 1445 1-340 ‘95 2-874 2-217 1-904
- 80 1551 1-468 1-357 96, 3-195 2356 2:005
81 1-583 1-491 1-375 97 1 3-669 2-540 2:138
82 1619 1-516 1-393 ‘98 | 4-469 2-803 2:332
83 1-658 1543 1-413 99 6-284 3-?86]) '2-6(719 b
-84 1-700 1573 1-435 . 97 N 1+%) + k)
-85 1-747 1-604 1-458 Nearly 1 i 32(1‘152)1/2 Ilog(l_/c) “16 lOg(l )
| |
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The values are calculated to the nearest unit in the third decimal place, and are,
I believe, correct. They have been checked by a professional calculator.

The numbers show that discrimination between ABranAM’S formula and No. 2
is a somewhat delicate matter, and would require experiments of a high order of
aceuracy.

If we assume that the mass of the negative particle in Becquerel rays is
in+m/f (k) or p, where f (k) stands for any of the co-efficients in the three formulee, we
may apply the calculation to KAUFMANN'S observations.

In KaurmaNN’s first paper we have the relations

~

. ’
= -4175_%{‘_,: K.,

Y Y

é—; = 359 x 107 [,
where F is the strength of the electric field, H the strength of the magnetic field,
2/ is the magnetic, and ¢ the electric deflexion.

The constant K, is directly determined by the conditions of the experiment, and
since it is free from any theory as to the way in which p depends on the value of F,
this appears the most satistactory way in which to proceed. Kaurmann, however,
adopting ABrRAHAM'S formula and the view that the whole mass is electric, proceeds
to determine the constants which will best fit the experimental curve 2/, 4. This
does not appear to me to be strictly logical, since it gives a bias in favour of the
theory adopted. The procedure has been ably criticised by Praxck (‘ Phys. Zeit,
1906, p. 753), and I think we must agree with him in standing-by the determination
of the constant which is independent of any theory. Unfortunately in the first
paper there are not sufficient data to caleulate K,, but we may accept the value *257
for plate No. 19, which is stated to be in good agreement with the value as reckoned
from the conditions of experiment. It ought to be specially favourable to the theory
adopted by KaurmMann.

Plate No. 19 has been selected as the best, according to Kavimaxy, and two
readings omitted as clearly subject to some casual error of observation. The values of

k are first calculated and then the values of ]%/ These ought to be proportional to

A+BF (k).

The values are then combined in pairs to give three values of B thus,

o @W=() L (=) p__ ()=

S k)= (k) (ks) = (kz)” S ko) =S (ks)

These ought to give the same values for B. The mean is taken and used to calculate
"A.  This is theoretically the best mode of combining the observations.

VOL. CeX.—A. Z
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, 1 , S (%), ,
7. . k - Differences. | THOMSON, | Differences. B. A.
k2 No. 1.
<247 <0678 +936 4-325 2559 +82
+3435 +1019 -866 3-361 1-834 i -85
+391 +1219 *824 3103 1:635 i 86
437 -1420 *786 2:911 1-414 1:510 1-049 | 1:35 -84
+4825 +1660 Y 2:774 587 1414 <420 1-39 -84
+5265 +1916 706 2690 413 1-337 +298 1-38 86
1-37 84
ABRAHAM.
2-068 -15
1-661 01
1-527 02
1-437 1631 2:24 01
1:-364 297 1-97 <02
1-303 224 1-84 06
2:02 04
Present
No. 2.
1-797 — 58
© 1:500 - 73
1-401 — 72
1334 463 3:05 -+73
1-280 +220 2-67 — 72
1-234 167 2-47 —~ 68
2:73 - 69

The superiority of THOMSON’S formula No. 1 in giving constant values for B and A
is at once apparent. ABRAHAM'S formula gives distinctly increasing values of B as k&
increases, and thus does not give a large enough dependence of mass on speed, even
if’ the mass is assumed to be wholly electric. No. 2 gives the same disagreement in
the values of B and a negative value to the real mass, a result quite inadmissible.
Selecting No. 1, we obtain

e/C . . 221
e R e YIS AT
and
°/C_ _ 162x10.
m+m
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In his latter experiments, which KAUFMANN considers more accurate, we have

_ F 7 e _C,,
b=Gmy G- EY
where
F = 315x10Y, H = 557"1.
Hence

Z,
k= -1884%,
y

As Pranck has shown, this gives k greater than 1 for KAUFMANN’S smallest values
of # and ¢/, and I have selected four of his readings from Table VIL as falling within
a suitable range.

£ (b,
4 9. k _1 .| Differences. | THOMSON, | Differences. B. A.

ke No. 1.
*2400 *0502 *900 4:629 2085 1-79
<2890 + 0645 *844 4-100 1-718 1-76
*3359 +0811 +780 3-816 813 1:-493 *592 1-37 1-78
- 3832 +1001 721 3619 *481 1-362 +356 1-35 s 17T
1-36 177

ABRAHAM.
1:816 1:-09
1:585 1:01
1424 +392 2-07 1:04
1:323 +262 1:-83 1:04
1-95 1:04
Present

No. 2.
1613 37
1-444 : 29
1-325 +288 282 +32
1:249 +195 2-46 +32
264 *32

We again find that TroMsoN’s formula No. 1 gives most ‘satisfactory agreement,
while ABrRaAHAM’S formula and No. 2 do not meet the case.
Z 2
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With No. 1 we get

ofC . . 313
ey 0 B ST S E Trd oY
and
fC _ 1rixion
m-+m

N
The difference between the values of Z—% from the two investigations is not
m+m

perhaps very serious, but the relative magnitudes of m and ' in the two cases is
more important. In the first set m appears to be about 3w/, 'while in the second set
m 18 about equal to m’. Some latitude must, however, be allowed in the value of the
constant K, in the first set and the ensuing values of & The function f(k) is
extremely sensitive to changes of £, when % is approaching unity, and thus relatively
large changes in the calculated ratio of 1 to m/ will be produced. More accurate
experiments are necessary to decide this point.

We may, however, claim that formula No. 1 provides a substantial explanation of
KAUrFMANN'S experiments, and assigns to the real mass of the particle a value
comparable with the electric mass.

If we wish to hold the view that the mass of an electron is wholly electric we must
conclude that the particles in KAUFMANN'S experiments are not electrons, but are
either charged particles with a real constitutional mass, or electrons which have
become attached to gross matter.

The analysis, on the other hand, is distinctly against Asramam’s formula and
No. 2. ,

We have no right to conclude that the particles are conductors, as it is still
probable that the assumption of perfect insulation would explain the experiments
(see Section 9). We may only claim that the assumption of perfect conductivity
does not disagree with the facts.

We may, however, fairly argue from the experiments that condition (2) cannot be
maintained along with the view that the particles are conductors, while condition (1)
with this hypothesis adequately explain the facts.

In forming a judgment of the results of this application of theory to experiment it
may be well to recall the concluding paragraph of Section 4.

Since this analysis was made an investigation by Bucngrkr (* Phys. Zeit, 1908,
p. 755) has appeared. He gives the results of experiments agreeing well with
LoreNtZ formula m/[(1—%*)" for a “ contracted electron,” but not in agreement with
ApraaaM’s formula. T may say that KaurmanN's experiments also agree excellently
with LorenTz' formula, just as they do with THomsoN’s formula, when a proportion
of ordinary mass is admitted. The reason is that both formulee contain an infinity of
the form 1/(1—#%)"". KAUFMANN'S results thus seem to me not inferior in accuracy
to those of BUCHERER.
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113

Lorextz formula is derived from the * quasi-stationary” principle, which may or
may not give correct results. But, as was stated in Section 2, I have not yet seen
how to apply the method of this paper to a body which alters its dimensions as the
velocity alters. -

Discussion of BUCHERER'S results by the present method cannot therefore be
adequately done. We may note that TrHomsox’s formula would not agree with
BucHERER'Ss numbers as well as does LorENTZ  formula, but would give much better
agreement than ABRAHAM'S formula, or the corrected value using condition (2) for an
accelerated motion. \

8. Imatval Motion of an Insulating Charged Sphere.—We shall suppose that the
sphere, initially at rest, has a uniform surface charge e, that the material has a
dielectric ratio K, and that the velocity of radiation in the material is €/, thus

K = 7/

The equations for the wther outside the sphere remain the same as before, but
while the field inside the sphere is initially zero, the motion must give rise to a
disturbance inside the sphere.

While the fundamental equations for the wether are unaltered by the motion of
electrified bodies, this is not the case with the equations for the moving matter
itself. |

As will be shown in Section 9, there is still considerable uncertainty as to what
the true equations are. This difficulty does not, however, enter in the first order
approximation.

If we refer to the equations for the sether in Section 5 and put £ equal to zero, we
see that the problem of a first order approximation there turns on a solution ¢ of the
equations for a state of rest along with a solution depending on the initial field, the
latter depending on the form of the equations.

Now in a similar way the disturbance in an insulating body will depend on a
solution of the equations for the insulator at rest along with a solution depending on
the form of the equations for a moving insulator and the initial field. Since, however,
the initial field inside the sphere is zero the difficulty is removed, and we require only
a solution of the equations for the insulator at rest, and these we know to be of the
torm given on p. 148 supra, with € replaced by (; at all points where there is no
charge. The units must be suitably chosen. ‘

Hence at points outside the sphere the electric force is-given by

(X, Y, Z) = S, 2) + (=1, 0, 0) (12" +x—efC)

+ 97—79(1 y, 2) (X" +3ry + 3 —3e€/[C).
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Inside the sphere we may have both converging and diverging disturbances, and
hence we assume at all points inside

X, Y, Z) = 3( 1, 0, 0) {79 (Ot =) + 75" (C't407) +0 (Yo =) + iy + 4}
S, ) 02 ) 3 () 43 () .

Now the field must not become infinite at the origin, and this requires as a primary
condition that

Uy (C'8) +4, (C't) =
Neglecting squares of velocity, &c. (X, Y, Z) = (X', Y, Z'), and the tangential
component of electric force must be continuous at = @, and hence we get

O (X" +ay +x—e€[C) = C{a® (" ") +a (0 =) + s+ o}

Further, the surface density of electricity o = ZL g% and the difference of normal
' T

flux must equal 47o.
We thus get the additional condition

Clax +x—e&[C) = KC {a (/=) +yn+s}.

The components of electric force at the surface are

Along normal outside Ny = & + 221 (a4 —eg/0),
, tangent ,, T, = _C. ;m 0(002 " ay +x —e€fC),
. . (/ Pl 4
,,  normal inside N, = =22 {a (Y =)+ + P},
, tangent ,  Tp= - O SO () 0 (=) )

a®
Now the resultant tractions are
Along normal —8%' {N/+(K-1) T KNy},

eT
,, tangent ——%
’ 8 d7a®

Hence the force per unit area in the direction of is

1 s . T, .
o NP+ (K=1) T2—KN,?} cos 0+ f?(; sin 0,
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On integration for the whole sphere we get the comparatively simple value

_29C »
37, X/

Thus the equation of motion of the sphere is
w3 p

Since the initial conditions are & = 0, £ = 0, when ¢ = 0, and x(—a) =% (—a)=0,
we get the integral

mé+4% = $F¢%

CX

Hence, eliminating &, we get the equations

Claty"+ax+ (1+20) =3 ST E = O (b4 )+ (B =) i+l

m
P
C{ax’-;- Q1+%>X—l%} = KC'{a (' =)+ + 4}

Thus, as a particular solution, we get

F 2maCt mm/ m
iy = Lo IOt il
x (Ct=a) # (m+m/) C? (m+m) ¢ (m+m’)2+(K-—1) (m—+m)
In addition, we must have vibratory terms in order to secure the satisfaction of the
initial conditions. For this purpose we assume the forms

X(Ot_y) — Ae—A(Ot-—r+a)/a’
Y (Ct—r) = Be™m@t=reak
$a (Tt r) = —BeRmenrros

These satisfy the condition
U (C't) + 4, (C't) = 0.

Substituting, we obtain the equations
C <>\2 I > A = C{RN—K"A+1—(1+ K"\ +K)\) -1 B,
s < 1+ —x> A = KC{1—K"\—(1 +K¥)) o= B,
The values of A are thus the roots of the equation

(K- 1)<1 +”l'>—(K— (14K Kwﬂ'>x+<K— 1 —K1/2%>K1/'2>\2—K(K1/2_ N
P U

(K— 1)<1+ >+(K 1)<Kw 1+K1/2””1> _<K—1+K1/2%>K1/2>\2+K(Kv2+1)>\3'
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Inspection shows that there can be no purely imaginary root, and further that
there must be an even number of positive roots, if any.
Again, for even moderate values of K the roots will be nearly those of

/ W / ! B
(K=1) (1+2) ~(K=1) (14K 4 R a g (K1 K20 R (KM 1)) =
\\\ 9 7 \ m

provided the root makes e very small.

Now this equation suggests a single positive root, but examination of the initial
form of the function shows that this root cannot differ from 0. As regards the
remaining two roots of the cubic, it is readily shown that real positive values of X are
impossible, while real negative values cannot make e small.  Hence we have a pair of
complex roots, the real part being positive.

For still greater values of K, the equation approximates to the form for a conductor,
namely, ‘

1+ t —A+N = 0.
m

There is, of course, also the possibility of other complex roots, just as in the
dynamical case of an elastic sphere vibrating in air. Without entering on the
determination of these, it seems reasonable to expect that the vibrations are of a
damped harmonic type and rapidly subside. They will be considered in Section 11.
When this condition has been secured, we get the solution in the form

: F : s 2ma(Ct—r4u) of m
Ct—r :;*_e__,[ Ct—r+a)— —2 { : }]
x( r)=1 (m+m)C? ( reka) (m+m) . (m+m'y + (K=1)(m+m")] )

and hence

¢ =

[

i) 9 2m/at of  m” m/ 1
- 207 .
m4m [ m-+m * { m+4m')? + K—=1)(m+m/ J
) )0

The result is very similar to that for a conducting sphere, differing only in the
contribution to apparent initial displacement. We therefore conclude that an
insulating sphere and a conducting sphere of equal radius and with equal surface
charge possess equal electric inertia for slow speeds.

9. Fundamental Equations for « Moving Dielectric.—It would “clearly be of
considerable value if we could determine the accelerated motion of an insulating body
at any speed, in the way that we have been able to determine it for a conductor.

As has been already mentioned in the preceding section, there is as yet no great
degree of certainty as to the fundamental equations.

In addition to conforming to the ascertained fundamental laws and the laws for the
sether as a special case, the equations must explain FRESNEL'S assumption as to the
velocity of radiation in a moving body.

Two systems of equations may be proposed :—
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Furst for axes fixed to the sether we may assume the system
Cr@z_?ﬁ, da _ dy éﬁ-?f’_‘>={ ___K__.l) a}(X Y, 7)
oy 0z oz ox  ox Oy

<3Y 0Z o4 _9X oX _OV)_ 0 g
%y’ ow o’ dy ow) ot 14

for a body moving parallel to 2 with velocity w.
These give for the velocity of propagation of radiation the value

o ] 0

which agrees with FRESNEL'S assumption as far as the first power of u.
Further, interpreting «, 8, y as magnetic and X, Y, Z as electric force, the equations
contain FARADAY'S law. The convection current due to material polarisation, viz.,

o B0 2 (x,y, 7),

is, however, difficult to explain on account of the factor 2.
Second, and again for fixed axes, we may assume the system

C,<ay 0B da _ 0y %_@>={Q+M%}(X,Y,Z)

dy &’ % ox’ ox Y ot K
v 0]
oz (oc, B, 7)‘

o <_8Z _0Z 0Z oX oY\ {
% oy’ w % 890)
These give for the velocity of radiation
pory K1)

K

again in agreement with FRESNEL'S assumption.

In this system, which possesses the great advantage of symmetry, we may interpret
a, B, y as magnetic force. In order to reconcile the equations with FARADAY’S law
we require to distinguish (X, Y, Z) as the sethereal electric force and

w(K—1) u(R=1)
{X, v+ 28ty 7 C,K }

as the total electric force. The convection current due to material polarisation is now

u(K-1) o
K o

(X, Y, Z)

and presents no difliculty of interpretation.
VOL. CCX.—A. 2 A
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A similar argument suggests the interpretation of X, Y, Z as electric force and
a distinction between sethereal magnetic force «, 8, y and total magnetic force

PRI SIS <IN

The existence of the additional electric force

{O, u(K—1) u(K—-l)B}

0K % T 0K
is supported by WILsON'S (" Phil. Trans.,” A, vol. 204, p. 121) experiment of rotating
an insulating cylinder in a longitudinal magnetic field. It would be equally important
to test experimentally the existence of the additional magnetic force

fo -*Gxte “GR Y

by rotating the insulating cylinder in a longitudinal electric field. RoNTGEN (¢ Ann,
der Physik, vol. 35, p. 264, 1888) has detected the existence of this force, but the
effect was too small to be measured.

This second system is, I think, intrinsically involved in Lorentz and LarMORr’s
equations, although not explicitly put in this symmetrical form, as far as I can find.

If this system could be established we could proceed to a higher degree of
approximation in the problem of motion of an insulator, and the similarity of the
equations to those for the sther shows that no greater analytical difficulty would arise.

We must still, however, remember the probable fact that K itself will be modified
by higher order even powers of the velocity.

Thus until the accuracy of these equations or modifications of them is established
beyond reasonable possibility of doubt, it would be a little absurd to apply them to
the motion of an insulator for velocities comparable with that of radiation, and this

consideration prevents me from attempting the solution of a problem which is clearly
soluble from an analytical point of view by a method similar to that used for a perfect
conductor.

- Although we cannot therefore proceed to the general problem of a moving insulator
at high speeds, we may show that if the dielectric ratio K is very large, the electric
inertia will be very nearly the same as for a perfect conductor. Since there is
continuity of normal flux of disturbed electric force at the surface, the functions
which determine the disturbance inside the sphere are of order 1/K as compared with
those which determine the outside field. Hence the tangential component of electric
force inside, and therefore also outside, is very nearly zero. Thus, since the
equations for the eether are not modified by the motion of the sphere, the equation
of motion and the surface forces outside differ by terms of order 1/K from those
for a perfect conductor. If this argument is valid, the assumption of perfect
conduction, or of a high value of K for the charged particle, would equally well
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explain KAUFMANN'S results, and give the same value for the electric inertia without
limitation as to speed.

10. Vibration of a Charged Conducting Sphere under a Periodic Force. —While
the examination of rectilinear motion is important from the general standpoint of
electro dynamles the problem of motion under periodic forces is no less important for
optical theory.

Using the same notation as in Section 3, we shall assume the accelerating force to
be purely mechanical and equal to F cos n¢. In this case the sphere may be supposed
never to move far from its original position, so that the approximation to the first
order remains valid for an unlimited time.

The surface condition is, as before,
a@’x"+ay +x—eé[C = 0,
and the equation of motion is B

,,,%25'+,23_%Q X" =T cos nt,
the integral of which is

mé+2 ()C ;@F; (1—cos nt).
Hence, if
7%, - %62/61102,
m F (1-—cos nt)
at' +a ~|_<1~ m er \1—-cosnt)
X X F m) X= mn?C

Rapidly damped harmonic vibrations are initially produced, and when these subside
we shall have only the residual effect of these with the particular integral.

Thus { /H___’__a n>00sn(0t—7”+a)+ gﬁsin%(gt—wa)}
O N eF eF < m 02 C . C C *
x( t“?)_(m+m')n20—mn20 m  an?\?  a'n? ’
' (1+““@2‘> T
m'  a*n?\
‘e 7 _F cos i m'F {<1+ P )cos nt+ﬁ sin nt} P
(mtm!)n? ™ mn® mn? (H_@f._ AL AL
¢/ C

It is possible to interpret this as a solution of the equation

M%’-ké: F cos nt,*

where - ,
a2n2 a4,n/4
(m+m’)-(m+m’)—07 +m =5
M = 2,,2 4,4
1 an N
T tor

* In the corresponding expressiohs at ¢ Roy. Soc. Proc.,” A, vol. 77, 1906, p. 272, note the error of sign.
Also in M the third term of numerator should be +.

2 A 2
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and
a
m =
3 C
e a*n®  a'n
-0 on
02 04

If squares and higher powers of %ﬁb may be neglected, we get M = m+m’ and

k = 36*[/C? and this agrees exactly with the equatlon proposed by LorexTz for the
motlon of an electron.

If we calculate the rate of radiation by means of the dissipation function it is found
that the mean rate of radiation is

212 / 2,,2\2 2,2
()
C®m m C
and this is also the result obtained by calculating the Poynting flux. We thus
obtain complete confirmation of LARMOR’S result for a vibrating electron.

11. First Order Vibrations of an Insulating Charged Sphere.—From Section 8 it
appears that the free vibrations of the first order are determined by the equations

Gl +ay' +x—e€[C} = O {a® (%" +4") +a (Y =)+ +fi},
C{ax' +x—ef[C} = KC {a (=) +n+s),

mg+%%§x" =0,

P (C8) +4 (C'2) = O

The assumption of a form x (Ct—r) = Ae @7+ with appropriate forms for ys
and v, led to the equation for A, viz.,

(K— 1)<1+ > —(K— 1){1+K1/2<1+m)}A+<K—1—KW%)KI/W-K(K‘/L1))&’

,—2K12N

(K—1)<1 +E>+(K—1){K1/2(1+E>—-1}>\—<K—1+K1/2%>K1/2A2+K(K1/2+ 1)N®
This equation may also be put in the form

K)\2<1+”i/—)\>
m

fanh K¥\ = K¥)\< 1+ , :
1 (K—1)<1+ﬂ—x>—Kﬂx+K>@
m m

If the sphere has no resultant charge or is held fixed, the equation becomes

K\ (1)) }
K—1)(1—N)+KN]"

tanh K2\ = K12\ { 1+
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This equation is, allowing for the differences of notation, the same as that obtained
by Lame (‘ Camb. Phil. Trans.,” Stokes’ Commemoration Volume, 1899). In that
paper the equation is discussed on the supposition that the sphere is of atomic
dimensions, and that K, the dielectric ratio, is exceedingly great. Hence, assuming
\ to be very small, we get the approximate equation

tanh KY2\ = K¥2\,

In this way LamB shows that there are a number of roots, the wave-lengths
corresponding to which may be large multiples of the diameter of the sphere, and
thus in the vicinity of the visible spectrum. v

A further approximation gives the modulus of decay, and in this way we find that
the first root is given by
4493 | (4-493)*

A=t K7 + '€

For such values of K as are contemplated by Lams (10°) the modulus of decay is
exceedingly minute, thus indicating a high degree of persistence of the vibrations
when once excited.

We have, however, seen in Section 8 that a pair of roots occurs in another way.
When K is large and \ not small the period equation becomes approximately

’
N1+ 2 =0,
m
or
MN—At+1=0
if the sphere is uncharged or fixed.
This gives

Thus, in addition to the vibrations considered by LamB, we have a vibration for
which the wave-length is comparable with the diameter of the sphere, and of which
the modulus of decay is very great.

This rapidly damped vibration corresponds to the vibration of a conductor.

This vibration has not been considered by LaMB in his paper; and it plays, as we
shall show, a very important part in the optical behaviour of a sphere of atomic size
with a large dielectric ratio.

For optical purposes it is necessary to determine the effect of a train of plane waves
on the sphere, and this problem has been solved for a fixed sphere by Laus (loc. cit.)
and LovE (‘ Proc. Lond. Math. Soc.,” vol. 30, 1899).

As is well known, the process consists in revolving the incident waves into terms
proportional to spherical harmonics of different orders and finding the excited
vibration which will satisfy the necessary surface conditions.
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If we attempted to carry out this process rigorously for a charged sphere the
problem would be very complex, because, in addition to the linear motion of the
sphere, rotation would also be set up. Doubtless the problem is well worth
investigation, but it is beyond the scope of the equations so far developed.

It appears, however, that for a wave-length of incident waves which is large in
comparison with the radius of the sphere, by far the most important term in the
incident waves is that corresponding to a spherical harmonic of the first order. This
is the term which gives rise to linear motion of the sphere with associated first order
vibrations. I therefore propose to limit the calculation to this order.

The equations at the beginning of this section have now to be modified by the
introduction of the harmonic term due to the exciting waves, and we might then
proceed to complete determination of & x, ¢, and ¢, We may, however, with
advantage, simplify the matter at the outset by remembering that for such a high
value of K as we contemplate, ¥, and 4, are in general of order 1/K" as compared
with y and &

Thus for a train of waves in the direction of z, for which the electrical force parallel
to @ is Fe™©*9 the equations for the first order vibrations are

w o eC ,  elFsinka ;0
mé+y —x' = ——-—¢
8, X ko ’

1 1 e aF 5 {(1—ka?) sin ko& ka cos ka o
T

These equations are exact for a conductor and approximately true for an msulator
the terms neglected being of order 1/K.
Taking the real part of the solution, we get

m e 5\ -
{<1 + — —ka > sin ka—ka cos ]ca}
F m

3
T2 N3 7 2
Ck <1+ 7_’”____]62062> +l20?

{<1+ -k 2>cosL(Ct —r+a)+kasin k (Ct— 9"+a)}

x (Ct—r) =

£=— erm]mc o O —

maCZR :&C X (Ct— CL).

These give the forced part of the excited motion, and we should have to add terms
depending on the free vibrations.

Tt is generally supposed that a vibratory motion of a charged sphere is attended
by the emission of radiation. This is proved by application of the Poynting flux,
and the field is supposed to be determined by a function y, which is identified with
e€/C, while the exciting field is totally neglected. Now the exciting field must be
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included in the calculation, and our equations show that the relation between ¢, y,
and the exciting field is not so simple as that generally assumed.
We have shown in Section 3 that the motion here considered is associated with a

C. [, o
D=35x(x-%).

dissipation function

It thus appears natural to suppose that the rate of radiation is 2D, and we have
shown in Section 10 that this agrees with the calculation by means of PoyNTINGS
Theorem when the motive force is purely mechanical and the proper relation between
x and £ is observed.

In the present case it appears that D may become negative, a result which can only
be interpreted as meaning absorption and not emission of radiation. Although this
result is somewhat novel, it is quite consistent with the common-sense view that there
may be circumstances in which a vibrating particle absorbs radiation and others in
which it emits radiation.

Substituting the values of x and ¢ in D, and taking the mean value for a complete
period, we find that the average rate of radiation is given by

I \ ’ A\ I3 / bl
. {(1 + —-k%ﬁ) sin ko — ko cos Aa} {(1 41 ——kgcwz> sin ka—( 1+ Z71> ka cos ka b
m m \ m S !

Q

F

274

oo

S
o

/ I 2
<1 L+ —-k%ﬁ) + Ko’
m

Now the roots of the equations

m

/ /
tan ka = <]. +”_l> ka/(l + I —k2a.2>,
m m

which are real, are in general different. We therefore have regions for which there is
radiation, separated by regions for which there is absorption.

The above expression for the radiation is true only if k« is a small quantity, and
this must be observed in discussing the application of the expression to actual fact.

The positively charged particles associated with the electric discharge appear to be
of atomic size and to have a ratio of mass to charge of the order of the electro-
chemical equivalent of hydrogen. For such a particle the ratio of electric mass to
ordinary mass is comparatively small.

If we take provisionally

/ 97?/, 2 .2
tan ko = ka Kl—k — — k'

and

=1x107%, m = 1x10"%, a=1x107%

Qle
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we get

I4
o 67 x 1078,
1

Now the equation
. / N .
tan ka = ka / 1+ -akga“>

m
! !

., R N . . 9 T
has a root ko = 0, and if — is small, a root given approximately by &a’ = §-—. The
m - ' m
other roots make ka finite, and are of no further concern here,

Similarly, the equation

/ " \
tan ko = <1+2@.\ lcoa/(1+ﬁ-—lc2a2)
oy \ m

14
has a root ka = 0, and for Z’% small the other roots make ka finite.
7

Under these conditions the rate of radiation is given approximately by

JAN
1 are (2 72,2 M
FCa’F <§ka—~~).

m
N 12 SN2
) m . . . Y
From ka = 0 to ka = <§l —) the expression is negative and above ko = (% ——->
m m

it is positive. We thus conclude that the particle absorbs radiation and sends it out
after in a conical beam for wave-lengths from infinity to a certain value, and for
shorter wave-lengths would emit radiation, which is the normal condition.

It is to be understood that the exciting source is a train of plane electric waves,
for with a purely mechanical exciting force there is always emission, according to the
result in Section 10. ‘

,
With the preceding value of % we find that the critical point, at which the change

from absorption to emission takes place, is given by ko = 107% This corresponds to
light of wave-length about ten times that for sodium light.

The value could readily be brought into the vicinity of the visible spectrum by
taking a particle made up of a group.

The true mass of such a composite particle would be proportional to the number of
components, while the electric mass would be proportional to the square, and thus
m/ could be increased.

We have already referred to Lamp’s conclusion that, if the dielectric ratio is of
order 10° the free periods come in the vicinity of the visible spectrum. We have
also noted the free period given by ko = 1,/3, which is necessarily in the ultra-violet,
and for which the agitation of the particle and, consequently, the excitation of the
other free vibrations must be abnormally increased.

If the exciting period does not exactly coincide with a free period, we may use the
approximate equations to show that there is emission of radiation in those free
periods.
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The relation between the parts of x and ¢ depending on a free period is

e
mé+3§ (—L)é =0,
so that

X——%=<1+W—z/>x.

\ m

"Thus the approximate dissipation function is

C m’> .
1~ 14 = 2
3w2< m) X

and this is necessarily positive. If, however, the exciting period exactly coincides
with a free period, the approximation is invalid, and we cannot draw this conclusion.

Turning next to the case of negatively charged particles, these carry the same
electric charge as the positively charged particles, but have a much smaller true
mass. As a consequence m/[/m for these is no longer small, but of finite order. Our
deduction from KAUFMANN'S experiments gave m’ of about the same order of
magnitude as m. This gives a value for @ = 1'6 x 107 which is much less than the
atomic radius.

Consequently a value of K = 10" would be required to give a free period in the
visible spectrum. |

When mw//m is finite, the roots of

I3
tan ka = ka / <1 v ——k2a2>
m

make ko finite and do not further concern us.
The roots of

14 a 14
tan ka = <1 + ql?’—> ka/( 1+ —k2a2>,
m

\ m

also, in general, make L« finite. But if @/fm is just less than 2, there is a possible
root which makes ka small, given approximately by

. 7 I
a2 %»«—l—m——) =2 ( 1— ﬂ)
@ <“ Y0 .

The rate of radiation is approximately

/ / . A
10aF? {ﬁ R ) 1.:2@2} {2 <211 —1) + ko <~%—~—1~- ﬂ)} :
* m \> S, “\2m AP TToY,
Hence, if m/fm is greater than 2, there is emission from infinite wave-length to
very far out in the ultra-violet.
If m/[m is less than 2, there is absorption from infinite wave-length to a certain
VOL. CCX.—A. 2B
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wave-length which depends on the closeness of m/fm to 2. Unless m/[m is very
nearly 2, it will be in the ultra-violet.

With the present estimates it appears that in general the radiation in the visible
spectrum from a single negative particle is but ;4 th of the radiation from a single
positive particle, and if m/fm is very nearly 2, the fraction will be still smaller.

We have thus proved important optical differences between positively and
negatively charged particles. The results appear to have some application in the
theory of excited luminosity, but as experimental knowledge of this subject is
making rapid progress, this does not appear a suitable occasion on which to discuss
a possible application of the results of this section.

12. Slow Rotation of a Charged Sphere.—The linear motion of a charged sphere
is, as we have seen, attended by a disturbance in the surrounding sether. This
disturbance gives a reaction on a moving sphere which is a single force. The
fundamental forms which we found it necessary to assume are sometimes spoken of
as disturbances of the first type. They might with propriety be called disturbances
of electric type.

The skew-symmetry of the equations for the wther suggests that we should inter-
change the expressions for electric and magnetic force with the requisite change of
sign. The disturbances represented by such forms are spoken of as of the second
type, and might be called of magnetic type.

It at once appears that disturbances of this second or magnetic type give a
reaction on a charged sphere which is not a single force, but is a couple tending to
rotate the sphere. We thus have the means of investigating the problem of an
accelerated motion of rotation of the sphere, similar in general character to the
method developed for dealing with accelerated linear motion. This problem, which
appears to have attracted some attention (LoreNtz, Enc. d. Math. Wiss.” Vol. V.,
2, Part 1, pp. 182-194, and others) in modern electron theory, is of considerable
importance in general electrodynamics, and clearly falls within the scope of the
present essay.

Taking, therefore, the case of a uniformly charged sphere, and assuming a
disturbance of the second type depending on a first order zonal harmonic, the state
of the sether outside the sphere is given by

A

(X, Y, 2) = 5o 2) + 502 =) (XX
(a, B, y) = (=1, 0, 0) (X" +1x +x)+ g(ﬂﬂ, wy, wz) (1" + 3ry’ 4+ 3x).

We may first observe that if' the sphere is a perfect conductor, we require that the
tangential component of electric force should vanish when » = «.

Hence
ax” (Ct—a)+x’((_1t—CL) = 0.
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Thus the disturbance is not of a vibratory character, but is of a purely exponential
type.

It may be observed that since the tangential component of electric force must
vanish at the surface of a conductor, no couple on the conductor can arise from this
cause. There remains the contribution to the tangential component of electrodynamic
force on account of the magnetic field. If this arises from the motion contemplated
it will give terms of the second order in the velocity of rotation, and may safely be
neglected. Thus to this order there can be no zether reaction on the conductor due
to its rotation. This does not imply independence of the rotation on the whole
magnetic field. If, for instance, the external force is due to a rotating magnetic field,
surface currents will be set up and a couple produced which will set the sphere in
rotation. ’

If, however, the sphere is an insulator, the tangential component of electric force is
no longer zero, and it will appear that there is a resultant couple on the sphere.

The equations for the inside of the sphere are, of course, altered by the assumed
rotation ; but just as in the problem of linear motion, we require a solution which is
small of the first order in the angular velocity of the sphere, and hence neglecting
terms involving squares of the angular velocity, the equations for insulators at rest
suffice.

Inside the sphere we have both diverging and converging disturbances represented
by yn (C't—r) and v, ('t +7) respectively.

Thus for the field inside we assume

(X, Y, Z) = (0, =) {r (b= ")+ /444

K% 0, B, 7) = O (=1, 0, 0) {7 (44 47 (=) 40}

+ %,3 (%, 2y, az) {* (Y +")+ 37 (P +4) + 3 (Y + )}

In these equations K = (?/C” and the factor K™"?is introduced in the form for
magnetic force inside in- order to make the units of measurement the same outside
and 1nside.

Further, y, ¢, and 4, are supposed to be small quantities proportional to the angular
velocity o, and squares of w are neglected.

Since the field must be finite at the origin, we must have

U (C)+4(C)y=0 . . . . . . . . . (1)
The normal component of magnetic force is continuous at » = a. Thus

C(ax'+x) = K2 {a (=) + P+ P},
or
atx == )R . L (2)
2 B2
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Inspection shows that this secures the continuity of the tangential component of
electric force at » = a.

The discontinuity of tangential components of magnetic force determines the
surface current which is due to the rotation of the uniform surface charge o = ef4na’
rotating with the sphere.

Thus the angular velocity round the x axis from OY to OZ is given by o where

elo = 0_2 [Obzx’/+60x’+x-— {a? (¢1"+\[/2") +a (1[;1/—[[12') -+ 1[12}],
in virt f (2 :
or 1n virtue o ( )a cw = (2 (X/(_lpl//_lpzl/) L o (3)
The tangential component of electric force from OY to OZ is
T=— %sin 0 (ax"+x)
'

Thus the total moment of the couple on the sphere, which is [oTa sin 8 dS reduces to

and this is the sther reaction on the sphere.

The motion contemplated may be originated by an extraneous electromagnetic
disturbance, in which case our conditional equations would have to be slightly
modified. But for clearness it is desirable to suppose that the sphere is acted on by
a purely mechanical couple of magnitude L. Hence, if' the sphere is uniform and of
mass m, the equation of motion is

mia’o = L.—32 ‘GEC (ax”"+x),

or (! )
m%a2d»+%~&;(ax”+x’)=,h e ()

The equations (1) to (4) determine the motion, and may clearly be presented in a
purely dynamical form.

The case of uniform rotation presents no special interest here. Passing to the case
of a constant external couple, it appears that a uniformly accelerated rotation is
possible. Without entering on algebraic details, we find that

5 Lt
x(Ct—=r)=3§ -Cg-(77f£ oy (C1=7),
6 (C1=1) = o g (V1)
o (C147) = = s e e (C7),

constitutes a solution which satisfies all the equations.
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Thus a uniformly accelerated rotation is possible, and the reaction of the medium is
equivalent to an increase of the effective inertia of the sphere = Fm/, m’ being the
electric inertia for linear motion at slow speeds.

The moment of inertia of the mass 2m/ uniformly distributed is $m/ x 2a? or m/a?,
and 1s the same as that of a thin shell of mass $m' and radius @. Thus for both
linear and rotary uniform acceleration the dynamical effect of the sether is represented
by the addition of a uniform thin shell of mass $m’ on the surface of the sphere, along
with a particle of mass $m’ at the centre of the sphere.

As in the case of linear motion, this state is not attained without the production of
initial vibratory disturbance which may be supposed to decay rapidly. The deter-
mination of these turns on the occurrence of free modes of motion, the arbitrary
constants being determined by the initial conditions.

The integral of (4), when L = 0, 1s

miolow+3< (ax +x) = 0,
and thus the free vibrations are determined by
“‘X,“'X = a (/=) +du i,
@’X"+ 5 (ax +x) = @ (" +4"),
¥ (C7) -+ (C'1) =

x (Ot—’}") —_ Ae—)\(Ct~r+a)/a’

Assuming the forms

‘//1 (O’t-—-?’) = Be"K'ﬂ/\(C’t—r+u,)/a,

lllz (C,t +’}") = ~B@"Kl’2A(C’t~r+a)/a’
we get
A. 1 —>\) = B {(1 -—-Kl/2}\) - (l +K1/2}\) 6—2}(1.’1,\}’

af- N3y Wb = BRX (1)

Thus X is determined as a root of

(1-—K‘/2)\){(1 w;” +>\2} (1—\) KN
AN "

(1+K1f2x){(1 A)a’”’" +>\2} —(1=)) KN

or

b

W
| Kl/?x{u_x)gﬂ +v}
tanh K¥2\ = n

_ g’m/ 2 2‘
(1=) 47 +X— (1-2) Kx

The first of these forms shows that there is a real root for A which will not differ
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much from wunity when K is large. It corresponds to a purely exponential
disturbance.
Again, if K is very great and X very small, but so that K'\ is finite, the second
form is approximately
\\

: A
tanh K"\ = K¥\2 i /<52L— ——K)\Z)‘

2 2
m m
Hence
N =tz
where

tan K"z = K'%3 i / <§ m +K22\>,
mf \* m ‘
the roots of which in general make K" finite. These correspond to a vibratory
disturbance, and a neaver approximation gives the damping coeflicient.

The problem of rotation of a vibratory character may also be treated by aid of the
equations. In dealing with the problem of linear vibration, approximate treatment
for large values of K was possible since ¢, and i, were small compared with x.

With rotary vibration v, ¢s, and y are of the same order, and approximate treat-
ment is no longer possible. I do not propose to give the results of this problem, as
they are somewhat cumbrous, and do not appear to present any important optical
features. Such a conclusion may be expected from the investigations of RAvLEIGH
(‘ Phil. Mag.,” p. 379, 1899), Lams, and Love (loc. ¢it.), which show that the radiation
for disturbance of the second type is insignificant compared with radiation for
disturbance of the first type. In this connexion it is interesting to observe the
nature of the mode of linking of the sphere to the sther in the two types. In both
we have the slowly damped vibrations which may be of wave-length large compared
with the diameter of the sphere if K is great. The main link is, however, through
the rapidly damped vibration of wave-length comparable with the diameter, in the
case of a linear vibration, and the purely exponential disturbance in the case of
rotary vibration.

The considerations in Section 9 prevent us from attempting to extend the results
to the case of a high speed of rotation.

The independence of small linear motion and small rotary motion will be apparent
from the method of examining the two cases, and we are thus able to present in a
purely dynamical form the equations of motion of a sphere in general, provided the
velocities are small compared with that of radiation.

The disturbance of exponential type, which occurs in the problem just treated,
arises with all disturbances of magnetic type associated with zonal harmonics of odd
order. It also occurs with all disturbances of electric type associated with zonal
harmonics of even order. Pure damped harmonic vibrations, on the other hand, occur
with disturbances of magnetic type associated with even order zonal harmonics, and
disturbances of electric type associated with odd order zonal harmonics.

Changes of the linear motion of a charged sphere give rise to disturbances of
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electric type. Those depending on odd order harmonics are damped harmonic waves,
while those depending on even order harmonics are a mixture of exponential and
damped harmonic waves.

Similarly, changes of rotary motion of a charged sphere give rise to disturbances
of magnetic type. Those depending on even order harmonics are damped harmonic
waves, while those depending on odd order harmonics are a mixture of exponential
and damped harmonic waves. That depending on the first order harmonic is,
however, a purely exponential wave.

13. Induced Klectrification and Electric Vibrations on o Conducting Sphere
moving with Uniform Speed.-——When a fixed spherical conductor is under the
influence of an electrical field, the problem of finding the induced potential is, as is
well known, a comparatively simple matter, an inducing potential involving the
same spherical harmonic and no other.

If, however, a spherical conductor is constrained to move uniformly in a straight
line in a specified electrical field, the problem is more difficult. An inducing normal
force involving a given spherical harmonic no longer gives rise to an induced surface
density invelving only the same spherical harmonic, but terms involving other
spherical harmonics may also arise.

The form of solution for a given inducing field depends on what we take as the
proper boundary condition. As has been shown, we may take the condition (1) that
the tangential component of electric force (X, Y, Z) should vanish at the surface of
the sphere, or the condition (2) that the tangential component of (X’, Y/, Z') should
vanish at the surface of the sphere.

I propose now to give the solutions for the case of a spherical conductor constrained
to move in the direction of = with a uniform velocity #C in a field of uniform
force F, which is parallel to the direction of motion. With condition (2) the problem
may be stated as follows :—

Determine a function, ¢, which satisfies

P | %P P
(1— )a +3_yf+?“2'“0’

so that the tangential component of

XY Z) = (1 (M 0 2
(X, Y0 Z) = (1—k kafr’ dy’ E)z)

at 7 = « shall be equal to the tangential component of

(1= F (=1, 0, 0).
If, as before,

a’ (1 — k) (P +2%) g
cosh® x sinh®x ’


http://rsta.royalsocietypublishing.org/

A
A

A
A

/\
-
A

'\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

1\

[~y

/J
A

\

a

/N

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

192 MR. GEORGE W. WALKER ON THE INITIAL ACCELERATED

we find that
¢ = Ax {log coth 4n—1/cosh n}

1 + ]x,)}
A=F / { —1log 7
1s the solution.

With condition (1) the statement of the problem is:-—Determine a function, ¢,
which satisfies

where

’\2¢ ’\2¢ O
x? 8y 07* ’

-#) 7

so that the tangential component of

(XAcmz{@_m

<9
-
O
&
o)la)
I\ -
\—,—J

at » = a shall be equal to the tangential component of

, F (-1, 0, 0).
? i +f 427
p 1 L2 Q/
2
P12 - ({Bl——_kZO;) + y2+7«2
2
P22 — (wl-l— ]CZ;) +y2+z2’

the solution is

oA 1, {(p+p) —Ka*/(1-k)}
1
¢ = Aw {log coth $n—1[cosh 9} +4 =" p og {(p+p)—Ra](1—17)}

L (=) (1+k)
A”F/V” 5 8 oy

where

The surface density of electricity is given by

Aa/f;x: Y 7/6260;;1%2 og {(p+p1)2—/vjaz/(1 L2)
(=) (=5 8 (ot pu =P 1= )}

470 =

the appropriate values of p, p;, and p, at the surface » = a being substituted.

We have seen in Section 3 that the production of a uniformly accelerated slow
motion is established by the aid of a rapidly damped harmonic train of waves and the
period equation has been found.

Further, in Sections 5 and 6, where no limitation as to speed is made, we have
indicated that the production of a uniformly accelerated change of the motion is
established in a similar way. It was assumed that the initial vibrations set up were
rapidly damped, but the equations given are not sufficient to give the period equation.
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It is therefore desirable to discuss this point more fully, and it will be sufficient for
our present purpose to consider the sphere as constrained to move uniformly in a
straight line with velocity kC. We may state our problem as the determination of
the period equation for first order vibrations on the sphere, such as would be excited
by the production of a uniform field of electric force.

When the sphere is at rest the vibrations depending on zonal harmonics of different
arders are quite independent of each other; but when the sphere is moving this is no
longer the case. In particular, the vibrations excited in establishing a uniform field
no longer depend solely on a zonal harmonic of the first order, but involve an infinite
series of zonal harmonics, as might be expected from our examination of the steady
distribution produced by a uniform field.

In general, the components of electric force are

__ % _ P _ 0%
X= oy 0’ Y—ayaw’ Z_azaac’
where
o _ (16,26 29
( k08ﬂ> $=C < ay 07
Since the field is to be symmetrical about the axis of # we may write
1L 0 _0d¢ y 0°¢ z ¢
X=—twmt =< =
et B et vt FAIE et vl

where
3 ofP 10 3¢
(at kG >¢ C(Z}x T ae)

If we make LoreENTZ transformation

A ]C X
kb wecri
we get
Xeo 10 0 y_ gy @ by @,z PP Eoo2 9%
@ 0w Ow w O O (l—lcz)Umam'ai' = 0w 0% (1 ]”2)(/5781:7&'
and

1@ o O 3
a—mar =Y ‘{(1 A 5‘3}

We now assume condition (1), that the tangential component of X, Y, Z at » = a
should vanish.

Thus
b oo B¢ w9 10 3 _

(1 ]cz)Oarawat' & Ow O waw 0w

when » = a.
This may be written
19 k _xdp o  0dp| _
=3 {(1 W Cor " aw @i ="
VOL., COX.—A. _ 2 ¢
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when » = a, or

® 0w Cor

la{ e a_is}
A=) Car™ " or

when = = a.
In performing the partial differentiations, ¢ must first be expressed as a function of

independent variables » and p = % , and after differentiating with respect to », the

functions must be expressed in terms of independent variables @ and =, and the
differentiation with respect to = performed.

Let
k

(B
The surface condition at » = & may now be written

: aa {ww‘/) 4)}

D 0w

1/2 "
P oceld = O and put A =

The simplest form for ¢ is

— 0
4)0:6_,, where p2'— +y7+27 = P+ N
P

k2
and derived forms are obtained by successive differentiations with respect to a.
We shall now approximate by neglecting terms involving higher powers of X than \2.
Let

— 3y 9(150
b= A+ A, A +A, 237

where
A, is of order A\,

A, is of order \?,
and higher terms are neglected.
Now
o )\2n 2n

(;L,)O l)bo + 21 on /7/‘ ll;n

w=(L 2]

where

r or)

Thus, as far as squares of \, we have

b = Ao (Yot SN ) + Ay + Ay (Y + p'r*isy),

where
M= ”/U/’f
On performing the differentiations, as already explained, we find that the surface
condition 1s — Ay (0 — ) — A, (04— 34),

+& {)\0A01/11 - Al (02'1[’1 - 2¢’2) } s

+$2 {—%—)\'2A0 (eglpl'—lllz)“"}\HAll/}Q_Ag (921p2—31113)} = 0,
when 7 = a.
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Equating the coefficients of the various powers of x to zero, we get
—INA, (g — ) + NOA Wiy — Ay (Pif,— 3¢5) = 0,
NIA W, — A, (P —24,) = 0,
Ay (Py—1n) + Ay (P —3¢;) = 0.

Eliminating A,, A,, and A,, we get the period equation

Py — X (O =00t 2457) (04—
CT T2 (624’2—34’3) (0211’1“‘2‘/’2) .

Now, when X is entirely neglected, we get
FP—y =0, or  AF+al+l =0,
which is our former period equation for a fixed sphere. The roots are

V3,
2

Qi

af = —%+0
We can now proceed to an approximation to @ in \* by putting

af = _%ing +¢

on the left-hand side of the period equation, and substituting the value

in the term on the right-hand side, which is of order A% In this term we may use
the approximate results

2
P = 04, aPy = —20%,, and @ = 0y +10 g(:é Yo

Hence we find

A .A%594/3
{=g60 7" 780
Thus
INANEVEYS x259>
L g .Sy (i I
@l §<1 1.30>— 2< 390

We could, in a similar manner, proceed to the period equation for higher order
vibrations, and to calculate higher approximations to the roots in powers of A% The
process would be tedious, and I have not as yet discovered any artifice for effecting
the summation.

2c2
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We have now proved that the time factor of first order vibrations is

(1—k2)12C0t!
e

060:-_1./1 > Z\/3< A59°
2& 130 2\ 390)’

where

N = (1),

and higher powers of A are neglected.
In a similar way condition (2) leads to

The result shows that both the frequency and the damping coefticient of the first
order vibration diminish as the velocity of the sphere increases. The effect is clearly
not considerable until the velocity is nearly that of radiation, and a higher degree of
approximation for such a speed is necessary.

We have assumed that the sphere is constrained to move uniformly. If the sphere
is uncharged no constraint is necessary, so that the solution applies directly to the
case of an uncharged sphere. If the sphere is charged and unconstrained the
equations are more complicated, so that I shall give only the result.

The time factor of the vibrations is

(1= oY
e 2

140 m/ .. A2 m 1630 m/ 5902
0 = L4120 ns <3 4 > <1 030 My >
af = ( T 507 m 30) + 5ol m 390

where

= */(1—-F*), - and m' = 2e*faC?

This approximation neglects squares of m//m and higher powers of N, and if' we also
agree to neglect products of #//m and N* we get, when condition (1) is used,

) — N AN 1 /‘7 » 'J}L/\;l‘z / 9)\2
al = —4 <1. rf—~/ + 4 Ké }-4 ) (\1 90)

“while condition (2) leads to

AN Ve 2
af = —%i%<3+4%>/ (14-—)‘->.

So far as these calculations go they indicate the way in which the process of
attempting to establish a uniform acceleration, at speeds nearly that of radiation,
may fail. The damped harmonic train of waves may have such a small damping
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coefficient that it is no longer legitimate to neglect those waves, and a uniform
acceleration cannot, in point of fact, be established.

We may further observe that an uncharged sphere of atomic size would, under
ordinary conditions, give fundamental vibrations of frequency corresponding to
extreme ultra-violet radiation, damped with exceedingly great rapidity. Our result
proves that, at a speed approaching that of radiation, the fundamental vibration may
be brought within the visible spectrum range, and at the same time the damping
becomes relatively small. '

A similar conclusion holds for an unconstrained charged sphere provided m/[m is
not large.

These results are of significance in optical theory, and investigation of the effect
of speed on the vibrations, carried to a higher degree of approximation, appears to be
desirable.
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